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Abstract— Immune checkpoint blockade (ICB) therapy has shown promise in treating melanoma, yet resistance remains a critical obstacle, 

with many tumors evolving mechanisms to evade immune detection. This review explores the development and application of the 

Immunotherapy Resistance cell-cell Interaction Scanner (IRIS), a machine learning model designed to predict and analyze ICB resistance by 

identifying ligand-receptor interactions in the tumor microenvironment (TME). Specifically, IRIS uncovers Resistance Downregulated 

Interactions (RDIs)—cell-specific ligand-receptor pathways that are downregulated in resistant tumors, particularly those involving chemokine 

signals critical for CD8+ T cell infiltration, such as the CXCL9-CXCR3 interaction. The IRIS model analyzes bulk transcriptomic data, 

identifies relevant interactions using the CODEFACS and LIRICS algorithms, and generates a Resistance Downregulated Score (RDS) to 

predict patient response. IRIS outperforms traditional biomarkers, offering a more dynamic and cell-type-specific approach to assessing TME 

interactions and ICB resistance mechanisms. Understanding RDIs enables stratification of patients likely to benefit from ICB and informs 

potential combination therapies to re-engage immune infiltration in resistant tumors. This review highlights IRIS's role in advancing 

personalized medicine by addressing tumor heterogeneity and providing insights into ICB resistance mechanisms, ultimately contributing to 

more effective cancer immunotherapy strategies. 

 

Keywords— Immune checkpoint blockade (ICB), Melanoma, Ligand-receptor interactions, Tumor microenvironment (TME), Resistance to 

immunotherapy, CD8+ T cell, Machine learning in cancer therapy, IRIS model (Immunotherapy Resistance cell-cell Interaction Scanner), 

Resistance Downregulated Interactions (RDIs), Predictive biomarkers, Chemokine signaling,, Cancer immunotherapy, Tumor immune evasion, 

Personalized medicine, Prognostic biomarkers, Resistance mechanisms, Tumor heterogeneity, Cell-cell interactions, Computational 

immunology. 

 

I. INTRODUCTION  

A. Background of Immune Checkpoint Blockade (ICB) 

Therapy: 

Immune checkpoint blockade (ICB) therapy is a type of 

cancer treatment that uses antibodies to block proteins on 

immune cells, known as immune checkpoints, which prevent 

the immune system from attacking cancer cells. (15) (31) 

Tumour cells can exploit this mechanism to evade immune 

detection. ICB therapy works by blocking these checkpoints, 

which allows the immune system to recognise and destroy 

cancer cells. (31) The first immune checkpoint to be identified 

was CTLA-4, a protein on T cells that competes with the 

costimulatory molecule CD28 for the same ligands, CD80 and 

CD86. (31) CTLA-4 has a higher binding affinity than CD28, 

so it can suppress the activation of T cells by binding to CD80 

and CD86 on antigen-presenting cells. (31) Blocking CTLA-4 

with antibodies, such as ipilimumab, can improve T cell 

priming and counteract Treg suppression, which can lead to 

tumour regression. (31) PD-1 is another immune checkpoint 

that is expressed on activated, antigen-experienced tumour-

infiltrating lymphocytes (TILs). PD-1 is overexpressed by 

exhausted CD8+ T cells (TEX), which progressively lose their 

effector functions upon chronic antigen stimulation during 

cancer. (31) Blockade of PD-1 or its ligand PD-L1 can 

reinvigorate these cells, resulting in their expansion and 

enhanced anti-tumour activity. (31) Antibodies blocking PD-1 

or PD-L1 include pembrolizumab and nivolumab. (31)  

ICB therapy has been particularly successful in treating 

melanoma, a type of skin cancer. (31) ICB was pioneered by 

Jim Allison and colleagues, who showed that blocking CTLA-

4 in mice could cause tumour regression. (31) This discovery 

paved the way for the development of human CTLA-4 

blocking antibodies. (31) Ipilimumab was the first therapy 

shown to extend survival in patients with metastatic 

melanoma, leading to its approval in 2011. (31) PD-1 was 

later recognised as another crucial T cell immune checkpoint, 

and clinical trials with PD-1 blocking antibodies in refractory 

solid tumours yielded promising results. (31) Phase 3 studies 

in melanoma confirmed that PD-1 inhibitors like 

pembrolizumab and nivolumab could prolong survival 

compared to ipilimumab or chemotherapy. (01) (31) These 

agents were approved for metastatic melanoma treatment in 

2014. (31) 

The clinical success of ICB in melanoma underscores the 

therapeutic potential of reinvigorating the immune system to 

effectively target this disease. (31) However, even with 

combination ICB, a significant proportion of patients do not 

experience long-lasting benefits, necessitating further research 

into predictive biomarkers of response and new targets for 

combination therapies to overcome immune resistance. (31)  

CD8+ T cells are essential for anti-tumour immunity, as 

they are responsible for directly killing cancer cells. (03) (24) 

Tumour-infiltrating lymphocytes (TILs) are enriched for 
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melanoma-associated antigen specificity, indicating the 

priming, expansion, and recruitment of anti-melanoma T cells 

to the tumour. (31) However, the effectiveness of cancer 

immunotherapy in solid tumours is contingent upon the 

adequate distribution of effector T cells into malignant lesions. 

(24) Immune-cold tumours, characterised by a scarcity of 

effector T cells, employ diverse mechanisms to exclude T 

cells, including the lack of tumour antigens, defects in antigen 

presentation, absence of T cell activation, and a deficiency in 

trafficking signals towards the tumour core. (24) 

Resistance to ICB therapy is a major challenge. (15) (26) 

While ICB therapies have shown significant promise in 

treating various cancers, a large proportion of patients do not 

respond, or develop resistance to these therapies. (07) (13) 

(15) (17) (20) (21) (23) (29) This resistance can be intrinsic, 

meaning that the tumour is resistant to ICB from the outset, or 

acquired, meaning that the tumour develops resistance over 

time. (08) (15)  

Understanding the mechanisms of resistance is critical for 

improving the effectiveness of ICB therapy and developing 

new therapies to overcome resistance. (07) (08) (19) (24) (26) 

(31) Research suggests that a resistance program is expressed 

by malignant cells that promote T cell exclusion and immune 

evasion. (15) This program, present before immunotherapy, 

characterises cold niches within the tumour and predicts 

clinical responses to anti-PD-1 therapy in melanoma patients. 

(15) Further investigation is needed to fully understand the 

complex interplay of factors within the tumour 

microenvironment that contribute to ICB resistance. (24) This 

involves studying the various cell populations, signalling 

pathways, and molecular interactions that can either suppress 

or enhance the immune response against cancer. (11) (18) (28) 

(31)  

By elucidating the mechanisms of immune evasion and 

developing novel therapeutic strategies that target these 

pathways, it may be possible to improve response rates to 

immunotherapy and achieve better outcomes for patients with 

melanoma and other cancers. (07) (08) (19) (26) (29) (31)  

B. Role of Tumor Microenvironment (TME) in Resistance:  

The effectiveness of cancer immunotherapy, particularly 

Immune Checkpoint Blockade (ICB), depends on the adequate 

presence of effector T cells within the tumour lesions. (24) 

However, non-responsive or 'cold' tumours can evade ICB 

through mechanisms that exclude T cells from the tumour 

microenvironment (TME). (24) (34) Tumours actively 

modulate the TME to hinder T cell infiltration, leading to 

resistance to ICB treatment. (34)  

The TME encompasses various components such as immune 

cells, stromal cells, blood vessels, and the extracellular matrix. 

These elements interact dynamically with cancer cells, 

influencing tumour growth, invasion, and metastasis. (22) The 

presence and functionality of different immune cells within 

the TME can significantly impact the response to therapies. 

(04) For instance, a higher density of T cells, particularly 

CD8+ cytotoxic T cells and CD45RO+ memory T cells is 

generally associated with a positive prognosis in various 

cancers, including melanoma and head and neck, breast, 

bladder, urothelial, ovarian, colorectal, renal, prostatic, and 

lung cancer. (04) However, other immune cells, such as 

regulatory T cells (Tregs), myeloid-derived suppressor cells 

(MDSCs), and M2 macrophages, can suppress anti-tumour 

immune responses, hindering ICB efficacy. (08) (21) (23) (25)  

Understanding the diverse roles of immune cells within the 

TME is crucial for developing effective immunotherapies. 

(04) The TME can impact ICB effectiveness through several 

mechanisms: 

• T cell Exclusion: Cold tumors often lack sufficient 

chemokine signals to attract T cells to the tumour core. 

Factors like vascular endothelial growth factor (VEGF) 

can suppress chemokine production and hinder T cell 

infiltration. (24) 

• T cell Dysfunction: Suppressive factors within the TME 

can impair T cell function. (10) For instance, regulatory T 

cells (Tregs) can limit T cell activity through direct 

contact and inhibitory cytokines. (21) (23) Myeloid-

derived suppressor cells (MDSCs) also contribute to 

immune evasion and tumour growth, hindering ICB 

response. (08)  

• Immune Checkpoint Molecules: Immune checkpoint 

molecules like PD-1 and CTLA-4 are often upregulated in 

the TME, suppressing T cell activity and contributing to 

ICB resistance. (08) 

• Cytokine and Chemokine Milieu: The balance of cytokines 

and chemokines in the TME can impact immune cell 

recruitment and activity. Some chemokines recruit 

immunosuppressive cells like Tregs and MDSCs, while 

others attract effector T cells. (19)  

Therefore, targeting these TME-mediated resistance 

mechanisms through combination therapies may be necessary 

to improve ICB efficacy. (26) 

Importance of Ligand-Receptor Interactions in TME for 

Immune Responses:  

Ligand-receptor interactions play a crucial role in regulating 

immune cell activity within the TME and influence response 

to ICB. (06) (16) (34)  

• Cells communicate through these interactions, where a 

ligand from one cell binds to a receptor on another cell, 

triggering downstream signalling pathways that modulate 

cellular behaviour. (16)  

• The specificity and strength of these interactions can 

influence the recruitment, activation, and function of 

various immune cells within the TME. (16) (26) 

• Dysregulation of ligand-receptor interactions can 

contribute to immune suppression and ICB resistance. 

(26)  

For example: 

• Chemokine-mediated T cell recruitment: Chemokines are a 

type of cytokine that guide the migration of immune cells. 

(29) Chemokine receptors on T cells interact with specific 

chemokine ligands expressed by cells within the TME, 

directing their movement towards the tumour site. (27) 

The CXCL9 and CXCL10 chemokines, which bind to the 

CXCR3 receptor on activated CD8+ T cells, are essential 

for effective T cell recruitment and response to ICB 

therapy. (30) Tumours can develop resistance to ICB by 
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downregulating or inactivating these chemokine signals, 

preventing T cell infiltration and creating a 'cold' TME. 

(26) (30) (34)  

• Immune checkpoint interactions: Immune checkpoint 

molecules, such as PD-1 and CTLA-4, act as inhibitory 

receptors on T cells. Their ligands, PD-L1 and B7 family 

members, are often upregulated in the TME, suppressing 

T cell activation and contributing to ICB resistance. (08) 

Blocking these interactions with ICB therapy can 

reinvigorate T cell responses. (26) However, tumours can 

develop resistance by downregulating MHC expression or 

upregulating alternative inhibitory checkpoints. (19) 

Characterising the ligand-receptor interactions within the 

TME is crucial for understanding ICB response and 

identifying potential therapeutic targets. (34) Using 

computational tools like IRIS (Immunotherapy Resistance 

cell-cell Interaction Scanner), researchers can identify ICB 

resistance-associated ligand-receptor interactions from bulk 

transcriptomic data. (34) This approach can reveal specific 

ligand-receptor pairs whose downregulation is linked to ICB 

resistance. (34)  

Furthermore, investigations of ligand-receptor interactions 

in the TME can: 

• Predict ICB Response: The activity of specific ligand-

receptor pairs in pre-treatment samples can help predict 

response to ICB therapy. (26) For instance, the activity of 

RDIs (Resistance Deactivated Interactions) in pre-

treatment samples is associated with a higher likelihood 

of response. (34)  

• Uncover Resistance Mechanisms: Analysing changes in 

ligand-receptor interactions can reveal how tumours 

evade immune attack. (26) For example, downregulation 

of chemokine signalling pathways that recruit CD8+ T 

cells to the tumour is a significant mechanism of ICB 

resistance. (26) (34)  

• Identify Therapeutic Targets: Ligand-receptor pairs 

involved in ICB resistance may serve as potential 

therapeutic targets. (26) Strategies to enhance stimulatory 

chemokine expression or block inhibitory interactions 

could improve anti-tumour responses. (26) (34)  

II. CURRENT CHALLENGES IN ICB THERAPY  

A. Primary and Acquired Resistance: 

Primary resistance refers to a clinical scenario where a 

cancer does not respond to an immunotherapy strategy. (08) 

The mechanistic basis of the lack of response to 

immunotherapy may include adaptive immune resistance, 

which occurs when the immune system recognizes a cancer, 

but the cancer protects itself through adaptation. (08) Acquired 

resistance describes a situation where a patient initially 

responds to immunotherapy but later experiences disease 

progression. (08) This can occur due to the selection of 

resistant clones already present before treatment or because of 

true acquired resistance that develops during immunotherapy. 

(08) 

Mechanisms of Primary and Adaptive Resistance 

Both tumor-cell-intrinsic and tumor-cell-extrinsic factors 

contribute to these resistance mechanisms. (08) 

Tumor-Cell-Intrinsic Factors: 

• Absence of antigenic proteins: This can occur due to low 

mutational burden, a lack of viral antigens, or the absence 

of cancer-testis antigens. (08) Without sufficient tumor-

specific antigens, the immune system may not effectively 

recognize and target cancer cells. (08) 

• Absence of antigen presentation: Tumor cells can evade 

immune recognition by downregulating or losing the 

expression of molecules involved in antigen presentation, 

such as major histocompatibility complex (MHC) class I 

molecules. Deletions or silencing of genes involved in 

antigen processing and presentation, like TAP and B2M, 

can lead to reduced MHC I expression and impaired T 

cell recognition. (08)  

• Genetic T cell exclusion: Certain genetic alterations 

within tumor cells can promote T cell exclusion from the 

tumor microenvironment (TME). (08) For example, 

activation of the MAPK oncogenic signaling pathway or 

stabilization of β-catenin can create a TME that hinders T 

cell infiltration. (08) (15) additionally, a mesenchymal 

transcriptome signature in tumor cells is associated with T 

cell exclusion and resistance to ICB. (15)  

• Oncogenic PD-L1 expression: Some tumors constitutively 

express high levels of PD-L1, an immune checkpoint 

molecule that suppresses T cell activation. (08) This 

oncogenic PD-L1 expression can contribute to primary 

resistance to anti-PD-1 therapy. (08)  

• Insensitivity to T cells: Tumor cells can develop 

insensitivity to T cell-mediated killing, even if T cells 

infiltrate the TME. (08) Mutations in interferon-gamma 

(IFN-γ) signaling pathways, a critical cytokine for T cell 

activation and anti-tumor immunity, can render tumor 

cells less susceptible to T cell attack. (08) 

Tumor-Cell-Extrinsic Factors: 

• Immunosuppressive cells: The TME often harbors 

immunosuppressive cells such as regulatory T cells 

(Tregs), myeloid-derived suppressor cells (MDSCs), and 

M2 macrophages. (08) These cells can suppress the 

activity of anti-tumor T cells, limiting the effectiveness of 

immunotherapy. (08)  

• Physical barriers: The extracellular matrix and other 

structural components of the TME can form physical 

barriers that prevent T cells from reaching tumor cells. 

(08) 

Mechanisms of Acquired Resistance 

Acquired resistance can develop through various 

mechanisms, often involving alterations within tumor cells or 

changes in the TME: 

• Loss of target antigen: Tumor cells can lose expression of 

the target antigen recognized by the immune system. (08) 

This can occur through genetic mutations or epigenetic 

modifications, leading to immune escape and resistance to 

therapies targeting that specific antigen. (08)  

• Loss of HLA expression: Tumors can downregulate or 

completely lose expression of HLA molecules, 

particularly MHC class I, which are essential for 

presenting tumor antigens to CD8+ T cells. (08) This loss 
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of antigen presentation can lead to immune evasion and 

resistance to T cell-mediated killing. (08) 

• Altered interferon signaling: Tumor cells can acquire 

mutations or epigenetic changes that disrupt IFN-γ 

signaling pathways. (08) This disruption can dampen the 

anti-tumor immune response, impairing T cell activation 

and effector functions. (08) 

• Loss of T cell functionality: T cells within the TME can 

become exhausted or dysfunctional due to chronic antigen 

stimulation and exposure to immunosuppressive factors. 

(08) Exhausted T cells exhibit reduced cytokine 

production, impaired cytotoxic activity, and increased 

expression of inhibitory receptors, leading to diminished 

anti-tumor immunity. (14) 

B. Limitations of Existing Biomarkers: 

Transcriptomic biomarkers are becoming increasingly 

important in cancer research, especially in the field of 

immunotherapy. However, they have limitations, particularly 

when used to predict a patient’s response to immune 

checkpoint blockade (ICB) therapy. (17) (26) (34) 

• Bulk transcriptomic analyses overlook the inherent 

heterogeneity of the tumour microenvironment (TME). 

(26) (34) Different cell types, including immune cells, 

stromal cells, and tumour cells, contribute to the overall 

gene expression profile of a tumour sample. Bulk RNA 

sequencing provides an averaged gene expression signal 

across all cell types, potentially masking crucial cell-type-

specific changes associated with response or resistance to 

ICB therapy. (26) (34)  

• Single-cell RNA sequencing can address cell 

heterogeneity but has limitations. (26) (34) Single-cell 

transcriptomic signatures might not generalise well to the 

larger bulk ICB cohorts, which are more commonly 

available. (26) (34) Additionally, single-cell studies are 

more expensive and complex than bulk analyses, limiting 

their widespread application in clinical settings. (15) 

• Many existing transcriptomic biomarkers are based on 

genes that are not directly targetable. (26) (34) This limits 

their translational potential, as they cannot inform the 

development of new therapies that directly modulate the 

identified resistance mechanisms. (26) (34) 

• The predictive power of transcriptomic biomarkers 

remains suboptimal. (26) (34) While some signatures 

show promising results, there is still room for 

improvement in accuracy and robustness across different 

patient populations and cancer types. (15) (26) (34) This 

limitation stems from the complex interplay of multiple 

factors influencing ICB response and the dynamic nature 

of the tumour-immune interactions during treatment. (08) 

(24)  

III. MACHINE LEARNING MODELS IN CANCER 

IMMUNOTHERAPY 

A. Machine Learning Predicts Immunotherapy Outcomes 

Machine learning (ML) is being used to build predictive 

models that forecast patient outcomes for cancer 

immunotherapies, especially immune checkpoint blockade 

(ICB) therapy. While these treatments show promise, they do 

not benefit all patients, and those who do respond see varying 

levels of success. (23) (31) 

• Researchers are exploring how to predict which patients 

will respond to ICB and how well they might respond. 

(21) 

• One approach leverages ML to create models that can 

identify complex patterns in patient data, such as gene 

expression profiles, immune cell composition, and clinical 

characteristics. 

• These models can be used to identify biomarkers 

associated with ICB response and non-response. (23) (26) 

Here are some examples of ML applications in predicting 

therapy outcomes: 

• IMPRES (Immune Prediction of Response) uses 15 

transcriptomic connections between immune checkpoint 

genes to predict ICB response in melanoma patients. 

IMPRES has an accuracy of AUC=0.83, surpassing other 

predictors by identifying almost all responders while 

minimising false positives. (13)  

• TIDE (T cell dysfunction and exclusion) predicts ICB 

response in melanoma patients by analysing gene 

expression signatures related to T cell dysfunction and 

immunosuppressive cell infiltration. This method has 

shown superior accuracy compared to PD-L1 level and 

mutation load when predicting outcomes for patients 

treated with anti-PD1 or anti-CTLA4. (14)  

• IRIS (Immunotherapy Resistance cell-cell Interaction 

Scanner) was developed to identify ligand-receptor 

interactions in the tumour microenvironment (TME) that 

contribute to ICB resistance. This model has been used to 

analyse multiple melanoma ICB cohorts (26) (34), and 

researchers have found that specific downregulated 

interactions, called resistance downregulated interactions 

(RDI), are strongly associated with ICB response. (34) 

These RDIs frequently involve chemokine signalling 

pathways. (34)  

• CODEFACS & LIRICS are tools that work together to 

analyse bulk tumour expression data and identify cell-

type-specific interactions in the TME. (32) Using a 

machine-learning-based genetic algorithm, researchers 

can identify interactions that predict clinical responses to 

ICB. (32) 

These examples highlight the potential of ML in 

improving cancer immunotherapy outcomes. 

• By using ML to identify biomarkers and predict response 

to therapy, clinicians can better select patients for 

treatment and develop more effective therapeutic 

strategies. (24)  

• These ML-based models can also shed light on the 

mechanisms of ICB resistance, which could lead to the 

development of novel treatments that overcome these 

challenges. (24) (26) 

B. Development of IRIS model 

The Immunotherapy Resistance cell-cell Interaction 

Scanner (IRIS) is a machine learning model designed to 

identify cell-type-specific ligand-receptor interactions in the 



International Research Journal of Pharmacy and Medical Sciences 
 ISSN (Online): 2581-3277 

 

 

104 

 
Ali Mohammad Makbul Tamboli, Julekha Munaf Tade, “Comprehensive Review: IRIS Model’s Role in Uncovering Ligand-Receptor 

Downregulation and ICB Therapy Resistance,” International Research Journal of Pharmacy and Medical Sciences (IRJPMS), Volume 8, 

Issue 2, pp. 100-114, 2025. 

tumour microenvironment (TME) that are associated with 

resistance to immune checkpoint blockade (ICB) therapy. (26) 

(34) IRIS was developed to address the limitations of existing 

transcriptomic-based biomarkers for predicting ICB response, 

which often fail to account for cell type heterogeneity within 

the TME. (34) 

• IRIS utilises bulk RNA sequencing data from patients 

treated with ICB therapy. 

• The data is first DE convolved using CODEFACS to 

estimate the expression profiles of ten different cell types 

within the TME. (26) (34)  

o These cell types include B cells, CD8+ T cells, CD4+ T 

cells, cancer-associated fibroblasts, endothelial cells, 

macrophages, malignant cells, natural killer cells, 

plasmacytoid dendritic cells, and skin dendritic cells. (34)  

• Next, LIRICS is used to infer the activity of cell-type-

specific ligand-receptor interactions in each patient based 

on the DE convolved expression profiles. (26) (34) 

• IRIS then uses a two-step supervised machine learning 

approach to identify interactions that are associated with 

ICB resistance. (26) (34) 

Step 1: Differential Activation Analysis 

• The first step of IRIS identifies interactions that are 

differentially activated between pre-treatment and post-

treatment non-responder patients. (26) (34) 

• A Fisher's exact test is used to identify interactions that 

are significantly activated in either the post-treatment 

non-responder or the pre-treatment groups. (34) 

• These interactions are then classified as either resistant 

activated interactions (RAI) or resistant deactivated 

interactions (RDI) based on their differential activity. (26) 

(34) 

Step 2: Hill Climbing Aggregative Feature Selection 

• The second step of IRIS uses a hill-climbing aggregative 

feature selection algorithm to choose the optimal set of 

RDIs or RAIs for classifying responders and non-

responders in pre-treatment samples. (26) (34) 

• This process involves iteratively adding or removing 

interactions from the model and evaluating the model's 

performance at each step. (26) (34) 

• The final output of IRIS is a set of RDIs and RAIs that are 

hypothesised to be involved in ICB resistance. (26) (34) 

• These interactions can then be used to predict ICB 

therapy response in new patients. (26) (34) 

C. Why Machine Learning is Essential 

Machine learning is essential to uncovering complex 

interaction networks in the TME because the TME is a 

complex and dynamic ecosystem composed of multiple cell 

types that interact with each other through a variety of 

signalling pathways. (16) (26) (29) 

• These interactions can have a profound impact on tumour 

growth and response to therapy. (16) (26) (34) 

• Traditional methods for studying the TME, such as 

immunohistochemistry, are limited in their ability to 

capture the complexity of these interactions. (26) (34) 

• Machine learning algorithms can be used to analyse large, 

high-dimensional datasets and identify patterns that would 

be difficult or impossible to detect using traditional 

methods. (26) 

• This allows researchers to gain a deeper understanding of 

the complex interactions that occur within the TME and 

identify potential therapeutic targets. (26) (34) 

For example, IRIS has been used to identify RDIs that are 

strongly associated with ICB response in melanoma. (34) 

Many of these RDIs involve chemokine signalling pathways, 

which are important for regulating the trafficking of immune 

cells to the tumour site. (34) 

By identifying these interactions, IRIS can help 

researchers to understand the mechanisms of ICB resistance 

and develop new strategies to overcome these challenges. (26) 

(34) For example, one potential strategy would be to develop 

drugs that target the RDIs that are downregulated in resistant 

tumours. (34) This could help to restore the trafficking of 

immune cells to the TME and enhance the efficacy of ICB 

therapy. (34) 

IV. KEY FINDINGS FROM THE STUDY 

A. Ligand-Receptor Interactions and ICB Resistance 

Ligand-receptor interactions form the basis of 

communication between cells in the tumour microenvironment 

(TME). (34) This communication is essential for coordinating 

immune responses against cancer. 

• When a ligand, which is a molecule produced by one cell, 

binds to its specific receptor on another cell, a series of 

signals are initiated within the recipient cell. 

• These signals can lead to various outcomes, including 

changes in gene expression, cell proliferation, and cell 

migration. 

Key roles of ligand-receptor interactions in immune cell 

communication include: 

• Immune cell recruitment: Immune cells rely on 

chemokines, a type of ligand, to guide their movement to 

specific locations in the body. (50) For example, 

chemokines CXCL9 and CXCL10 are produced by cells 

in the TME and attract CD8+ T cells, which are crucial 

for killing cancer cells, by binding to the CXCR3 receptor 

on the T cells. (34) 

• Immune cell activation: The activation of T cells, the 

orchestrators of adaptive immunity, requires two signals. 

(31) 

o The first signal comes from the T cell receptor (TCR) 

engaging with an antigen presented by MHC 

molecules on antigen-presenting cells (APCs). 

o The second signal comes from co-stimulatory 

molecules. An example is the interaction between 

CD28 on T cells and CD80/CD86 on APCs, providing 

a necessary co-stimulatory signal for T cell activation. 

(31) 

• Immune suppression: Immune checkpoint molecules, like 

CTLA-4 and PD-1, are critical regulators of T cell 

activity, preventing excessive immune responses that 

could damage healthy tissues. (31) (33) 

o CTLA-4 competes with CD28 on T cells for binding 

to CD80/CD86 on APCs. Its higher affinity for these 
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ligands results in the suppression of T cell activation. 

(31) 

o PD-1 on T cells, upon interaction with its ligand PD-

L1 on tumour cells or other cells in the TME, dampens 

T cell function. (31) (33) 

Specific Findings of the Study: RDIs and RUIs in Resistant 

Tumours 

The study employed a machine learning model called IRIS 

(Immunotherapy Resistance cell-cell Interaction Scanner) to 

analyse data from five large melanoma ICB cohorts. (34) The 

model identified specific ligand-receptor interactions that are 

associated with ICB resistance. These interactions are 

classified as: 

• Resistant Downregulated Interactions (RDIs): These 

interactions are downregulated in tumours that have 

developed resistance to ICB therapy. (34) Many RDIs are 

involved in chemokine signalling, suggesting that 

resistant tumours suppress these pathways to reduce the 

infiltration of lymphocytes, specifically CD8+ T cells, 

into the TME. (34) 

o Examples of RDIs include the interaction between 

CXCL9 and CXCR3, known to enhance CD8+ T cell 

responses and the interaction between XCL1, 

produced by NK cells, and XCR1 on dendritic cells, 

which is associated with anti-PD-1 response. (34) 

These findings suggest that the loss of these 

interactions contributes to creating a "cold" TME, 

characterized by low immune activity and reduced 

response to immunotherapy. (34) 

• Resistant Upregulated Interactions (RUIs): These 

interactions are upregulated in resistant tumours. (34) 

However, the study found that RUIs had a weaker 

predictive ability for ICB response compared to RDIs. 

(34) Further research is needed to understand the specific 

roles of RUIs in ICB resistance. 

B. Chemokine Signalling and CD8+ T Cell Infiltration 

The study uses a model called IRIS to identify ligand-

receptor interactions associated with ICB resistance. (34) 

These interactions are classified as resistant downregulated 

interactions (RDIs) if they are downregulated in tumours that 

develop resistance to ICB therapy. 

Impact of RDIs on CD8+ T Cell Recruitment 

Many of the identified RDIs are involved in chemokine 

signalling, a process crucial for attracting immune cells, 

including CD8+ T cells, to the tumour site. (34) Here's how 

RDIs involving chemokine signalling can negatively impact 

CD8+ T cell recruitment: 

• Disrupted Chemotaxis: Chemokines act as signposts, 

guiding immune cells towards areas of inflammation or 

infection, including the TME. (34) Downregulation of 

RDIs involved in this signalling pathway disrupts this 

chemotactic gradient, making it difficult for CD8+ T cells 

to locate and infiltrate the tumour. 

• Reduced T Cell Infiltration: As a result of the weakened 

chemotactic signals, fewer CD8+ T cells are able to 

penetrate the tumour. This leads to a decrease in the 

overall number of cytotoxic T cells within the TME, 

hindering the immune system's ability to mount an 

effective anti-tumour response. (34)  

• Transition to a "Cold" TME: The reduced CD8+ T cell 

infiltration ultimately leads to a shift from a "hot" or 

immunologically active TME to a "cold" or 

immunosuppressive TME. (34) This "cold" TME is 

characterized by a lack of immune cell activity, allowing 

the tumour to grow unchecked and evade immune 

surveillance. 

The Importance of the CXCL9-CXCR3 Interaction 

The CXCL9-CXCR3 interaction is a prime example of an 

RDI that plays a vital role in mediating immune responses 

against melanoma. (34)  

• CXCL9 is a chemokine produced by various immune 

cells, including dendritic cells, in response to 

inflammatory signals. (34) 

• CXCR3 is the receptor for CXCL9 and is primarily found 

on activated T cells, including CD8+ T cells. (34) 

The importance of the CXCL9-CXCR3 interaction stems 

from its influence on several key immune processes: 

• CD8+ T Cell Trafficking: This interaction is crucial for 

the recruitment of CD8+ T cells to the tumour site. 

CXCL9, produced within the TME, attracts CXCR3-

expressing CD8+ T cells, facilitating their migration into 

the tumour and enabling them to target cancer cells. (34) 

• Enhancing Anti-tumour Immunity: Studies have shown 

that the presence of the CXCL9-CXCR3 axis is associated 

with an improved response to PD-1 blockade in 

melanoma. (18) (34) This suggests that the interaction 

between CXCL9 and CXCR3 not only helps recruit CD8+ 

T cells but also contributes to their activation and ability 

to effectively kill tumour cells. 

• Predictive Biomarker: Research suggests that CXCR3 

ligands in both murine tumours and the plasma of 

melanoma patients could serve as an indicator of clinical 

response to anti-PD-1 therapy. (18) 

C. Predictive Power of RDIs as compared to RUIs 

The study highlights the superior predictive power of RDIs 

compared to RUIs in forecasting patient response to ICB 

therapy. (34) The study used a machine learning model named 

IRIS, which analyses the activity of ligand-receptor 

interactions in the tumour microenvironment. (34) 

RDIs as Superior Predictors of ICB Response 

The study demonstrates that RDIs outperform RUIs in 

predicting patient response to ICB therapy in the following 

ways: 

• Higher Predictive Accuracy: When comparing the 

performance of RDIs and RUIs in classifying responder 

versus non-responder patients, RDIs consistently showed 

higher Area Under the Curve (AUC) values across five 

melanoma ICB cohorts. (34) A higher AUC indicates 

better discrimination between responders and non-

responders, suggesting that RDIs offer a more reliable 

signal for predicting treatment outcomes. 

• Limited Predictive Power of RUIs: In contrast, RUIs, 

interactions upregulated in resistant tumours, 

demonstrated weaker predictive power. (34) Their AUC 
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values were significantly lower, indicating a limited 

ability to distinguish between patients who would benefit 

from ICB therapy and those who would not. 

Resistance Downregulated Score (RDS) and its Correlation 

with ICB Therapy Success 

The study introduces the concept of the Resistance 

Downregulated Score (RDS) as a measure of RDI activity 

within a tumour sample. (34) 

• Calculating RDS: RDS is calculated as the normalised 

count of activated RDIs in a patient's pre-treatment 

tumour sample. (34) 

• Correlation with ICB Response: A higher RDS indicates a 

greater likelihood of responding positively to ICB 

therapy. (34)  

This suggests that the more active-state RDIs present in a 

tumour before treatment, the more likely the patient is to 

experience a favourable outcome. 

RDS as a Robust Biomarker 

The study further validates the robustness and clinical 

significance of RDS: 

• Superior to Existing Biomarkers: RDS outperforms or 

shows comparable performance to several established 

ICB response predictors, including TIDE, IMPRES, MPS, 

the cytotoxic signature, and resF. (34) This highlights the 

potential of RDS as a valuable tool for guiding treatment 

decisions. 

• Predictive in the Absence of ICB Therapy: Notably, RDS 

can also stratify patients based on overall survival and 

progression-free survival even in the absence of ICB 

therapy. (34) This finding underscores that RDIs reflect 

fundamental immune response mechanisms that impact 

patient outcomes beyond the context of ICB treatment. 

Validation Using Single-cell Transcriptomics: Analysis of 

single-cell transcriptomics data confirms the predictive power 

of RDS in distinguishing between treatment-naïve and post-

ICB resistant tumours. (34) This finding strengthens the 

validity of RDS as a reliable biomarker across different data 

modalities. 

V. APPLICATIONS OF THE IRIS MODEL 

The IRIS Model, as described in the study offers valuable 

applications for predicting ICB resistance in melanoma and 

stratifying patients based on their risk. 

A. Predicting ICB Resistance 

The IRIS model leverages the identification of RDIs, or 

interactions that are downregulated in resistant tumours, to 

predict the likelihood of ICB resistance. By analysing pre-

treatment tumour samples, the model can identify patients who 

exhibit low RDI activity and are therefore at a higher risk of 

developing resistance to ICB therapy. (26) (34) This early 

identification of potential non-responders can guide treatment 

decisions, potentially sparing these patients from ineffective 

therapy and allowing for the exploration of alternative 

treatment options. 

Stratifying Patients Based on RDS Score 

The study introduces the concept of the Resistance 

Downregulated Score (RDS), a quantifiable measure of RDI 

activity in a tumour sample. The RDS score can be calculated 

from pre-treatment transcriptomic data, providing a valuable 

tool for stratifying patients based on their risk of ICB 

resistance. Here’s how the RDS score can be used for patient 

stratification: 

• Identifying High-Risk Patients: Patients with low 

RDS scores exhibit lower RDI activity and are 

therefore classified as high-risk. These patients are 

less likely to respond favourably to ICB therapy and 

may benefit from alternative treatment approaches or 

combination therapies that address the underlying 

resistance mechanisms. (34) 

• Identifying Low-Risk Patients: Patients with high 

RDS scores demonstrate robust RDI activity, 

indicating a higher likelihood of responding to ICB 

therapy. (34) These patients can be confidently 

treated with ICB, with a greater expectation of a 

positive outcome. 

Benefits of RDS-Based Stratification 

Employing the RDS score for patient stratification offers 

several advantages: 

• Improved Treatment Selection: By identifying 

patients likely to respond to ICB therapy, clinicians 

can make more informed treatment decisions, 

optimising treatment outcomes and potentially 

minimising unnecessary exposure to treatments with 

limited efficacy. (26) (34) 

• Early Intervention: Early identification of high-risk 

patients allows for prompt consideration of 

alternative treatment strategies or combination 

therapies, potentially improving their chances of 

long-term survival. (07) (08) 

• Personalised Medicine: RDS-based stratification 

contributes to a more personalised approach to 

melanoma treatment, tailoring therapies to the 

individual's unique tumour biology and immune 

profile. (19) 

B. Implications for Personalized Medicine 

The IRIS model, as detailed in the study holds significant 

implications for personalized medicine in melanoma 

treatment. (34) It provides a framework for tailoring treatment 

approaches based on an individual patient's tumour 

microenvironment and predicted response to immune 

checkpoint blockade (ICB) therapy. 

Guiding Personalized Treatment Approaches 

By identifying and quantifying RDIs, IRIS can inform 

treatment decisions in the following ways: 

• Selecting Appropriate Candidates for ICB Therapy: IRIS 

can predict which patients are most likely to benefit from 

ICB therapy. Patients with high RDS scores, indicating 

robust RDI activity, have a greater likelihood of 

responding positively to ICB and may be prioritized for 

this treatment modality. (34) 

• Exploring Alternative Treatment Options: For patients 

identified as high-risk for ICB resistance (low RDS 

scores), alternative treatment options can be considered. 

(34) This may include other immunotherapies, targeted 
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therapies, chemotherapy, or a combination of these 

approaches, depending on the specific characteristics of 

the patient's tumour. 

• Tailoring Combination Therapies: IRIS can guide the 

selection of combination therapies by identifying specific 

RDIs that are downregulated in the patient's tumour. 

Targeting these pathways with additional therapies may 

help overcome ICB resistance. For example, if RDIs 

involved in T cell recruitment are deactivated, combining 

ICB with therapies that boost T cell infiltration to the 

tumour microenvironment could be considered. (34) 

Benefits of Identifying Patients Who Would or Would Not 

Benefit from ICB Therapy 

Identifying patients who would or would not benefit from 

ICB therapy through IRIS offers several advantages: 

• Maximizing Treatment Efficacy: By selecting patients 

most likely to respond, IRIS can help maximise the 

efficacy of ICB therapy, leading to improved tumour 

control and potentially better long-term survival. (34) 

• Minimising Unnecessary Treatment and Side Effects: 

Identifying patients unlikely to benefit from ICB spares 

them from potentially ineffective treatment and 

associated side effects. (34) This is particularly important 

given that ICB therapies can have significant immune-

related adverse events. 

• Reducing Healthcare Costs: By avoiding ineffective 

treatments, IRIS can contribute to reducing healthcare 

costs associated with ICB therapy, allowing resources to 

be allocated more effectively. 

• Facilitating Clinical Trial Design: The insights gained 

from IRIS can be applied to the design of clinical trials, 

allowing for more efficient patient selection and 

potentially accelerating the development of novel ICB-

based therapies or combination strategies. 

VI. COMPARISON WITH OTHER BIOMARKER APPROACHES 

A. Comparison of IRIS with Other Biomarker Approaches 

The IRIS model, a machine learning method for 

identifying immune checkpoint blockade (ICB) resistance-

relevant ligand-receptor interactions in the tumour 

microenvironment, offers a novel approach to predicting ICB 

response in melanoma. (34) It distinguishes itself from other 

existing transcriptomic biomarkers by focusing on the 

downregulation of specific ligand-receptor interactions, 

termed RDIs, which are associated with enhanced lymphocyte 

infiltration in resistant tumours. (34) The RDS (Resistance 

Downregulated Score), derived from IRIS, quantifies RDI 

activity and demonstrates superior predictive accuracy 

compared to several established biomarkers. (34) 

Here's an overview of other existing models and their 

comparison with IRIS: 

• TIDE (Tumour Immune Dysfunction and Exclusion): 

TIDE infers gene signatures associated with T cell 

dysfunction and exclusion using bulk transcriptomics 

data from The Cancer Genome Atlas (TCGA). (14) (34) 

It predicts ICB response by correlating tumour 

expression profiles with T cell exclusion signatures in 

tumours with low cytotoxic T lymphocyte (CTL) levels. 

(14) While TIDE has been shown to predict ICB 

response in melanoma more accurately than PD-L1 

levels and tumour mutational burden (TMB), (14) the 

study found that the average AUC of RDS (0.72) was 

slightly better than that of TIDE (0.70). (14) Notably, 

RDS also demonstrated greater consistency across 

datasets, with a lower coefficient of variation compared 

to TIDE. (34) 

• IMPRES: IMPRES, a predictor of ICB response in 

melanoma, was developed by learning pairwise relations 

between 15 immune checkpoint genes associated with 

spontaneous regression in neuroblastoma using bulk 

transcriptomics. (13) (34) It achieves an overall accuracy 

of AUC=0.83, outperforming existing predictors by 

capturing almost all true responders while misclassifying 

less than half of the non-responders. (13) However, the 

study "A machine learning model reveals expansive 

downregulation of ligand-receptor interactions that 

enhance lymphocyte infiltration in melanoma with 

developed resistance to immune checkpoint blockade" 

found that RDS outperformed IMPRES (average AUC: 

0.62) in predicting ICB response in melanoma. (34) 

• MPS (Melanocytic Plasticity Signature): This signature 

was derived from mouse models and bulk 

transcriptomics of ICB patients, revealing a link between 

melanocytic plasticity and ICB therapy resistance. (34) 

However, its predictive power is limited, with an average 

AUC of 0.47, significantly lower than RDS. (34) 

• Cytotoxic Signature: This signature, correlated with 

aneuploidy and negatively correlated with immune 

infiltration, was identified using bulk transcriptomics 

from melanoma patients. (34) While its average AUC 

(0.72) is comparable to RDS, it lacks the cell-type 

specificity and focus on ligand-receptor interactions that 

distinguish IRIS. (34) 

• resF: This transcriptomic program associated with T cell 

exclusion and immune evasion was derived from single-

cell RNA sequencing of ICB-treated melanoma patients. 

(34) While it offers insights into resistance mechanisms, 

its average AUC (0.58) is lower than RDS, potentially 

due to its reliance on single-cell data, which may not be 

as readily applicable to bulk ICB cohorts. (34) 

• Tres (T cell resilience model): Tres identifies signatures 

of T cells resilient to immunosuppressive tumour 

microenvironments that confer antitumor properties 

using single-cell transcriptomics. (34) Its focus on T cell 

resilience complements IRIS's emphasis on ligand-

receptor interactions; however, direct comparisons of 

predictive accuracy are not available. 

The study highlights that many existing biomarkers, 

including TIDE, IMPRES, MPS, Cytotoxic Signature, and 

resF, have limitations, such as overlooking cell type 

heterogeneity within the tumour microenvironment, relying on 

single-cell data that may not be generalizable to bulk cohorts, 

and focusing on genes that are not directly targetable. (34) In 

contrast, IRIS leverages bulk DE convolved transcriptomics to 

identify cell-type-specific ligand-receptor interactions and 
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offers a robust and potentially targetable predictive biomarker 

in the form of RDS. (34) 

B. Advantages of Focusing on Cell-Cell Interactions 

Advantages of Ligand-Receptor Interactions as 

Biomarkers 

Focusing on cell-cell interactions, specifically ligand-

receptor interactions, offers several advantages in 

understanding therapy resistance over traditional bulk gene 

expression biomarkers. (34) Bulk transcriptomic biomarkers, 

which analyse gene expression in the entire tumour sample, 

often overlook the intricate cell type heterogeneity within the 

tumour microenvironment (TME). (34)  They provide a 

generalised picture of gene activity without discerning the 

specific contributions of different cell types. This lack of 

granularity can obscure crucial interactions between tumour 

cells and immune cells that drive resistance to therapies like 

ICB. 

In contrast, examining ligand-receptor interactions 

provides a more precise lens for understanding therapy 

resistance for the following reasons: 

• Cell-Type Specificity: Ligand-receptor interactions are 

inherently cell-type specific, meaning that the expression 

of a particular ligand on one cell type and its 

corresponding receptor on another cell type signifies a 

potential communication pathway between those two cell 

types. (16) By identifying these specific interactions, 

researchers can pinpoint the precise cellular crosstalk 

that contributes to resistance mechanisms. For instance, 

the downregulation of chemokine signalling pathways 

between tumour cells and immune cells, as revealed by 

the IRIS model, can directly impede the recruitment of 

cytotoxic T cells into the tumour, hindering the 

effectiveness of ICB therapy. (34) 

• Functional Relevance: Ligand-receptor interactions are 

the fundamental basis of cell signalling and 

communication within the TME. (34) They orchestrate a 

complex interplay between tumour cells and immune 

cells, influencing processes like immune cell 

recruitment, activation, and suppression. Identifying 

alterations in these interactions, such as the 

downregulation of RDIs in ICB-resistant tumours (34), 

provides direct insights into the functional mechanisms 

driving resistance. This functional understanding goes 

beyond mere gene expression changes, offering a more 

mechanistic view of how resistance develops. 

Targetable Pathways: Unlike many genes identified 

through bulk gene expression analyses, ligand-receptor 

interactions often involve proteins located on the cell surface, 

making them potentially targetable by therapeutic agents. (34) 

This targetability holds significant therapeutic promise, as it 

opens avenues for developing novel drugs or combination 

therapies that directly modulate these interactions to overcome 

resistance. For example, if specific RDIs are found to be 

crucial in mediating resistance, targeted therapies could be 

designed to reactivate these pathways, enhancing the efficacy 

of ICB therapy.. 

VII. CLINICAL AND RESEARCH IMPLICATIONS 

A. Potential for combination therapies 

Potential of RDIs to Inform Combination Therapies 

RDIs (Resistance Downregulated Interactions) are ligand-

receptor interactions that are downregulated in tumours 

resistant to immune checkpoint blockade (ICB) therapy. (34) 

These interactions play a crucial role in recruiting CD8+ T 

cells to the tumour site. (34) Chemokines, a type of signalling 

molecule, are particularly relevant to this process. (34) 

The identification of RDIs, especially those involving 

chemokine pathways, opens exciting possibilities for 

developing new combination therapies that target these 

pathways alongside ICB therapy. 

• Reactivating RDI Pathways: Tumours resistant to ICB 

therapy often exhibit a downregulation of RDIs involved 

in T cell trafficking. (34) This downregulation creates a 

“cold” TME (tumour microenvironment) characterised 

by low levels of lymphocyte infiltration. (29) (34) One 

therapeutic strategy could involve reactivating these 

silenced RDI pathways to restore chemokine signalling 

and enhance T cell recruitment into the tumour. This 

could potentially convert a “cold” tumour into a “hot” 

one, making it more susceptible to ICB therapy. (29) (34) 

• Enhancing Chemokine Gradients: Another strategy could 

focus on amplifying the existing chemokine gradients 

within the tumour. (01) By increasing the concentration 

of chemokines that attract T cells, researchers could 

enhance the chemotactic signals that guide T cells 

towards the tumour. This approach could be particularly 

effective in combination with ICB therapy, as it would 

create a more favourable environment for T cell 

infiltration and activation. 

• Targeting Multiple Chemokine Pathways: The 

chemokine system is complex, with multiple chemokines 

and receptors involved in immune cell trafficking. (34) 

Targeting multiple chemokine pathways simultaneously 

could potentially have a synergistic effect, leading to a 

more robust anti-tumour response. This approach could 

involve combining drugs that target different chemokine 

receptors or using gene therapy to enhance the 

production of multiple chemokines within the tumour. 

(02) 

Examples of Chemokine-Based Therapies: 

The sources cite several examples of how chemokine 

pathways can be targeted in cancer therapy: 

• CXCR3-CXCR3 Ligand Axis: Studies have shown that 

the CXCR3-CXCR3 ligand biological axis plays a 

critical role in mediating anti-tumour effects. In a study 

using a mouse model of renal cell carcinoma, combined 

therapy with IL-2 (to induce CXCR3 expression on 

immune cells) and intratumoural CXCL9 (a CXCR3 

ligand) led to enhanced anti-tumour immunity and 

inhibition of tumour-associated angiogenesis. (01) 

• IP10-EGFRvIIIscFv and CD8+ CTL Therapy: Research 

on gliomas has shown that combining a recombinant 

protein of IP10 (CXCL10) fused with a tumour-specific 

antibody fragment (EGFRvIIIscFv) with CD8+ cytotoxic 
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T lymphocytes (CTLs) synergistically inhibited tumour 

growth. (06) This combination therapy promoted CTL 

infiltration and cytotoxicity while inducing apoptosis in 

glioma cells. (06) 

• MIG (CXCL9) Gene Therapy with Cisplatin: Combining 

MIG (CXCL9) gene therapy with low-dose cisplatin 

showed improved therapeutic efficacy against murine 

carcinoma. (02) 

Clinical and Research Implications: 

The emerging understanding of RDIs and their role in ICB 

resistance has significant implications for both clinical 

practice and future research: 

• Predictive Biomarker: The RDS score, derived from the 

IRIS model, can serve as a predictive biomarker for ICB 

response. (34) It can potentially identify patients who are 

more likely to benefit from ICB therapy and those who 

might require alternative or combination treatment 

strategies. 

• Personalized Treatment Strategies: By identifying specific 

RDIs that are downregulated in individual tumours, 

clinicians can potentially tailor treatment plans to 

reactivate these pathways. This personalized approach 

could enhance the efficacy of ICB therapy and improve 

patient outcomes. 

• Development of Novel Therapeutics: The identification of 

RDIs as therapeutic targets opens new avenues for drug 

development. Researchers can focus on developing 

agents that specifically reactivate silenced chemokine 

pathways or enhance chemokine gradients within the 

tumour. 

• Exploring Combination Therapies: RDIs can inform the 

design of rational combination therapies that target 

multiple immune evasion mechanisms simultaneously. 

Combining ICB therapy with agents that boost 

chemokine signalling or modulate other immune 

checkpoints could lead to more effective treatment 

strategies. 

B. Challenges in Translating Findings to Clinical Practice 

While the Immunotherapy Resistance cell-cell Interaction 

Scanner (IRIS) shows promise as a tool for understanding and 

predicting resistance to immune checkpoint blockade (ICB) 

therapy, several challenges need to be addressed before it can 

be routinely used in clinical settings. (34) 

• Validation in Larger and More Diverse Cohorts: The 

initial development and validation of IRIS primarily 

focused on melanoma cohorts. (34) To establish its 

clinical utility, it's essential to validate its performance in 

larger and more diverse patient populations 

encompassing various cancer types and treatment 

regimens. (34) This will require access to comprehensive 

clinical data, including treatment response, survival 

outcomes, and molecular profiling data for different 

cancers. 

• Establishing Clinical Cut-offs: IRIS generates a resistant 

downregulated score (RDS), which reflects the activity 

of resistance downregulated interactions (RDIs). (34) 

Determining clinically meaningful cut-off values for 

RDS to distinguish between responders and non-

responders is crucial for its clinical application. This will 

require careful analysis of RDS scores in relation to 

clinical outcomes in different patient populations to 

establish thresholds that accurately predict ICB response. 

• Integration into Clinical Workflows: Incorporating IRIS 

into existing clinical workflows will require developing 

user-friendly software tools and standardized protocols 

for data processing, analysis, and interpretation. (34) 

This will necessitate collaboration between 

computational biologists, clinicians, and software 

developers to create a streamlined process that 

seamlessly integrates RDS scores into treatment 

decision-making. 

• Addressing Heterogeneity: Tumours exhibit significant 

heterogeneity, both within the same tumour and between 

patients. (34) This heterogeneity can influence the 

activity of RDIs and potentially affect the predictive 

accuracy of IRIS. Further research is needed to 

understand how tumour heterogeneity impacts RDS 

scores and to develop strategies to mitigate the effects of 

heterogeneity on ICB response prediction. 

• Functional Validation of RDIs: While IRIS identifies 

RDIs associated with ICB resistance, further functional 

validation is needed to confirm their causal role in 

mediating resistance. (34) This will involve conducting 

experiments to manipulate RDI activity, for example, 

using gene editing or pharmacological interventions, and 

assessing the impact on ICB response in pre-clinical 

models. 

• Considering Chemokine Complexity: The chemokine 

system, which plays a key role in immune cell 

trafficking, is highly complex with multiple chemokines 

and receptors involved. (34) The same ligand-receptor 

pair can mediate both stimulatory and inhibitory effects 

depending on the target cell type, concentration, and 

context. (34) Addressing this complexity will require a 

deeper understanding of chemokine biology and the 

development of more sophisticated models that account 

for these nuances. 

Overcoming these challenges will require a concerted 

effort from researchers, clinicians, and industry partners. By 

rigorously validating IRIS in diverse clinical settings, refining 

its predictive accuracy, and translating the findings into 

actionable treatment strategies, we can move closer to 

realizing the potential of personalized immunotherapy guided 

by cell-cell interaction analysis. 

VIII. LIMITATIONS OF THE STUDY 

A. Reliance on Bulk Transcriptomics 

Limitations of Using Bulk Transcriptomics: The Need for 

Single-Cell Analysis 

While the study, provides valuable insights into ICB 

resistance mechanisms, its reliance on bulk transcriptomics 

presents a limitation in fully understanding the complexities of 

the tumour microenvironment (TME). (34) Bulk 

transcriptomics measures the average gene expression across 

all cells in a tissue sample, masking the crucial cell-to-cell 
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variations within the TME. (15) (26) (34) 

To overcome this limitation, single-cell analysis is needed. 

Single-cell RNA sequencing (scRNA-seq) offers a higher 

resolution view of the TME by profiling the gene expression 

of individual cells. (15) (31) This technology enables 

researchers to: 

• Identify Cell Subpopulations and their States: The TME 

comprises a diverse array of cell types, including 

immune cells, cancer cells, and stromal cells. Each cell 

type exhibits specific functions and can exist in various 

states (e.g., activated, exhausted, or senescent). Single-

cell analysis can deconvolute this cellular complexity, 

revealing the presence of rare cell populations and their 

functional states, which would be obscured in bulk 

transcriptomic data. (15) (26) (31) (34) 

• Characterize Cell-Cell Interactions with Precision: 

Understanding the dynamic interactions between 

different cell types within the TME is crucial for 

deciphering the mechanisms of ICB resistance. Single-

cell analysis allows researchers to map ligand-receptor 

interactions with greater precision, providing a detailed 

picture of the communication networks that govern 

immune responses and tumour evasion strategies. (15) 

(16) (26) (31) (32) (34) 

• Study Spatial Heterogeneity: Tumours are spatially 

heterogeneous, with different regions exhibiting varying 

cellular compositions and microenvironmental 

conditions. Integrating single-cell analysis with spatial 

transcriptomics techniques can provide a spatial map of 

gene expression and cellular interactions, offering a more 

comprehensive understanding of the TME's architecture 

and its influence on treatment response. (12) 

B. Model Validation and Generalization 

The study, makes significant strides in understanding ICB 

resistance. However, the study acknowledges the need for 

further validation of the model, IRIS, in larger and more 

diverse cohorts to ensure its generalisability and clinical 

applicability. (34) 

• Limited Sample Size and Cancer Types: The study's 

primary analysis relied on five melanoma cohorts, which 

may not represent the full spectrum of ICB responses 

across various cancer types. (34) Validating IRIS in 

larger cohorts encompassing a wider range of cancer 

types, such as head and neck squamous cell carcinoma, 

gastric cancer, (09) and others, is essential. This broader 

validation can help determine if the identified RDIs and 

the model's predictive power hold true across diverse 

tumour microenvironments and immune landscapes. 

• Treatment Heterogeneity: The study included patients 

who received anti-PD1 monotherapy, anti-CTLA4 

monotherapy, and combination therapy. While the 

researchers aimed to identify general ICB resistance 

mechanisms, the limited sample size within each 

treatment category prevented them from drawing 

treatment-specific conclusions. (34) Larger cohorts with 

sufficient representation of different treatment regimens 

are crucial to uncover potential variations in RDI activity 

and predictive accuracy based on specific ICB therapies. 

• Impact of Tumour Heterogeneity: Tumour heterogeneity, 

both within and between patients, poses a significant 

challenge to generalising any predictive model. (20) 

Larger and more diverse cohorts would enable a more 

robust assessment of how inter- and intra-tumour 

heterogeneity impacts RDS scores and the model's ability 

to accurately predict ICB response across diverse patient 

populations. 

• Clinical Trial Design and Patient Selection: The cohorts 

used in the study were assembled from clinical trials with 

specific inclusion and exclusion criteria. These criteria 

may inadvertently introduce biases that limit the model's 

generalisability to broader patient populations. 

Validation in real-world clinical settings with less 

stringent patient selection would provide a more realistic 

assessment of IRIS's performance and its applicability in 

routine clinical practice. 

• Confirmation with Prospective Studies: The retrospective 

nature of the study warrants prospective validation to 

confirm the model's predictive accuracy in a controlled 

setting. Designing prospective clinical trials that 

incorporate IRIS analysis at baseline could offer valuable 

insights into its clinical utility and its ability to guide 

treatment decisions in real time. 

Expanding the validation of IRIS to larger and more 

diverse patient cohorts is crucial for moving this promising 

research closer to clinical implementation. Addressing the 

limitations associated with limited sample size, treatment 

heterogeneity, and potential biases will strengthen the model's 

generalisability and ensure its reliable application in guiding 

personalized immunotherapy decisions for a wider range of 

cancer patients. 

IX. FUTURE DIRECTIONS 

A. Expanding the Use of IRIS in Other Cancers 

The IRIS model, developed to identify ligand-receptor 

interactions associated with resistance to Immune Checkpoint 

Blockade (ICB) therapy in melanoma, holds potential for 

application to other cancer types. (34) This is because: 

• ICB resistance is a common challenge across various 

cancers: While ICB therapies have transformed cancer 

treatment, resistance remains a significant issue across 

different tumour types. (07) (08) (15) (31) 

• Shared biological mechanisms: The fundamental 

principles of immune evasion and T cell exclusion often 

share commonalities across different cancers. (07) (15) 

• Chemokine signalling and lymphocyte infiltration: The 

IRIS model highlights the importance of downregulated 

chemokine signalling in inhibiting lymphocyte 

infiltration, a crucial aspect of ICB resistance that could 

be relevant in other cancers. (34) 

How IRIS could be applied: 

• Training on diverse datasets: By training IRIS on 

transcriptomic datasets from various cancer types with 

corresponding ICB response data, the model could learn 

to identify resistance-associated interactions specific to 

each cancer. (34) 
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• Identifying targetable interactions: Applying IRIS to 

other cancers could reveal novel, potentially targetable 

ligand-receptor interactions that contribute to ICB 

resistance. (26) (34) 

• Development of combination therapies: Insights gained 

from IRIS could facilitate the development of 

combination therapies that address the specific resistance 

mechanisms identified in different cancer types. (26) 

(34) 

Supporting Evidence from Sources: 

• The resistance program identified in melanoma is 

observed to have varying levels of expression in other 

tumour types. (15) 

• Cancers known for being responsive to ICB (kidney, 

skin, lung) tend to have lower scores on the resistance 

program, while less responsive cancers (eye, testis) have 

higher scores. (15) 

• The study authors of IRIS suggest that the model's 

approach for identifying resistance-relevant interactions 

can be applied to other cancer types and scenarios. (34) 

• The importance of understanding cytokine and 

chemokine signalling in T cell exclusion is highlighted 

as a key aspect of overcoming resistance. (24) 

• Studies focusing on T cell recruitment and chemokine 

expression in melanoma suggest that manipulating 

chemokine expression in the tumour microenvironment 

could hold therapeutic potential. (03)  

• The broader context of combination cancer 

immunotherapies emphasizes the importance of tailoring 

therapies to specific tumour microenvironments, which 

the IRIS model could contribute to. (07) 

Important Considerations: 

• Tumour heterogeneity: Each cancer type exhibits unique 

biological characteristics and degrees of heterogeneity, 

which would require careful consideration when 

adapting the IRIS model. (15) (25) (31)  

• Data availability: Application of IRIS to other cancers 

depends on the availability of high-quality, clinically 

annotated transcriptomic datasets with ICB response 

data. (20) (25) (34) 

• Validation: Rigorous validation in independent cohorts 

and through experimental studies would be essential to 

confirm the findings and clinical utility of IRIS in other 

cancer types. (25) (34) 

B. Incorporating Single-Cell Data 

Incorporating single-cell data has the potential to 

significantly refine the identification of ICB resistance 

mechanisms revealed by the IRIS model. (34) 

• Enhanced Cell Type Specificity: Single-cell RNA 

sequencing (scRNA-seq) allows for the analysis of gene 

expression at the individual cell level, providing a much 

more granular view of the tumour microenvironment 

(TME) compared to bulk RNA sequencing. This would 

enable IRIS to more precisely pinpoint the specific cell 

types involved in resistance-associated ligand-receptor 

interactions. (15) (34) 

• Uncovering Cellular Heterogeneity: Tumours are 

composed of diverse cell populations, each with distinct 

functional states and contributions to resistance. (15) 

(31) (34) Single-cell data can capture this heterogeneity, 

allowing IRIS to identify interactions that might be 

masked or diluted in bulk analysis. For instance, it could 

reveal subpopulations of immune cells or cancer cells 

driving resistance. (15) (31) (34) 

• Spatial Context: Integrating single-cell data with spatial 

transcriptomics could provide insights into the location 

and organization of cells within the TME, further 

refining the understanding of how resistance-associated 

interactions contribute to T cell exclusion. (12) This 

spatial information could be crucial for understanding the 

dynamics of immune evasion. (05) (12) (26) (34) 

Potential Benefits: 

• Identification of novel therapeutic targets: By 

pinpointing specific cell types and interactions, single-

cell data could guide the development of targeted 

therapies aimed at disrupting resistance mechanisms. 

This could include therapies targeting specific 

chemokines or their receptors. (03) (34) 

• Development of personalized treatment strategies: 

Understanding the cellular heterogeneity of resistance 

could enable the development of personalized treatment 

approaches tailored to an individual's tumour profile. 

This could involve selecting the most effective ICB 

combination or identifying patients who might benefit 

from alternative treatment strategies. (08) (18) (31) 

Challenges: 

• Technical Complexity: Analysing scRNA-seq data 

presents technical challenges related to data 

processing, cell type annotation, and handling 

sparsity. 

• Cost and Scalability: scRNA-seq can be more 

expensive and time-consuming than bulk RNA 

sequencing, potentially limiting its application to 

large patient cohorts. 

• Integration with Machine Learning: Integrating 

scRNA-seq data with the IRIS model would require 

sophisticated machine learning approaches that can 

handle the complexity and dimensionality of single-

cell data. (16) (34) 

Examples from Sources: 

• The study demonstrating the IRIS model itself 

applied the model to a single-cell dataset from 

melanoma, revealing that downregulated interactions 

were enriched in immune cell types like macrophages 

and dendritic cells. (34) 

• A separate study utilized scRNA-seq to identify a 

resistance program in melanoma associated with T 

cell exclusion, highlighting the importance of 

understanding cellular interactions in the TME. (14)  

• Another study used scRNA-seq to investigate cell-

cell communication in mouse tumor models, 

emphasizing the potential of single-cell data for 
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studying ligand-receptor interactions and their 

association with tumour characteristics. (16)  

C. Potential for Drug Development 

The IRIS model's identification of specific ligand-receptor 

interactions downregulated in ICB-resistant melanoma 

presents exciting opportunities for drug development. These 

downregulated interactions, termed RDIs, often involve 

chemokine signalling, which is crucial for lymphocyte 

infiltration into the tumour microenvironment. (26) (34) 

Targeting these RDIs could offer new therapeutic strategies to 

overcome ICB resistance. 

Potential Therapeutic Approaches: 

• Enhancing RDI activity: Drugs that directly or 

indirectly boost the activity of RDIs could promote 

lymphocyte infiltration and restore immune 

surveillance in the TME.  (34) This could involve:  

o Recombinant chemokines: Supplementing the TME 

with recombinant chemokines corresponding to the 

downregulated ligands in RDIs could attract 

lymphocytes and enhance anti-tumour immunity. 

(03) For example, studies suggest that introducing 

chemokines like CXCL9 or CXCL10 could 

enhance T cell recruitment. (18) (30) 

o Agonists of RDI receptors: Developing agonists that 

activate the receptors involved in RDIs could 

mimic the effects of the downregulated ligands and 

promote lymphocyte trafficking to the tumour site. 

(03)  

o Inhibitors of negative regulators: Targeting negative 

regulators of RDI pathways could indirectly 

enhance their activity. (07) This could involve 

inhibiting enzymes that degrade chemokines or 

blocking signalling pathways that suppress RDI 

expression. 

• Combination therapies: Combining RDI-targeted 

therapies with existing ICB treatments could 

synergistically enhance anti-tumour responses. For 

example, stimulating lymphocyte infiltration via RDI 

modulation could create a more favourable 

environment for ICB to exert its effects. 

Challenges and Considerations: 

• Target specificity and off-target effects: Developing 

drugs that specifically target the desired RDIs while 

minimizing off-target effects on other chemokine 

pathways and immune cells is crucial. (24) 

• Delivery and penetration: Ensuring efficient drug 

delivery and penetration into the tumour 

microenvironment is essential for therapeutic 

efficacy. (07) 

• Patient stratification: Identifying patients most likely 

to benefit from RDI-targeted therapies is important 

for optimising treatment outcomes. This could 

involve using the IRIS model or other biomarkers to 

predict response. 

• Understanding the dynamics of the TME: The TME 

is a complex and dynamic ecosystem, and the effects 

of manipulating RDIs could vary depending on the 

specific tumour type and its microenvironment. (24) 

Further research is needed to understand the interplay 

between RDIs and other immune regulatory 

mechanisms. 

Examples from the Sources: 

• One study showed that transfecting tumour cells to 

express multiple chemokines enhanced tumour 

control in preclinical models. (03) 

• Another study suggested that the chemokine receptor 

CXCR3 and its ligand CXCL9 were critical for a 

productive CD8+ T cell response in tumour-bearing 

mice treated with anti-PD-1. (18) 

X. CONCLUSION 

A. Summary of Key Insights 

The Importance of RDIs and the IRIS Model in ICB 

Resistance 

The study highlights the critical role of resistance 

downregulated interactions (RDIs) in the development of 

resistance to immune checkpoint blockade (ICB) therapy in 

melanoma. (34) These RDIs are cell-type-specific ligand-

receptor interactions that are significantly downregulated in 

tumours that develop resistance to ICB. The study also 

introduces the Immunotherapy Resistance cell-cell Interaction 

Scanner (IRIS) model, a powerful tool for identifying and 

analysing these crucial interactions. (34) 

Key insights regarding RDIs and the IRIS model include: 

• RDIs as Biomarkers and Therapeutic Targets: RDIs, 

often involved in chemokine signalling crucial for 

lymphocyte infiltration, emerge as potential biomarkers 

for predicting ICB response and as promising targets for 

new therapeutic strategies to overcome ICB resistance. 

(34) 

• Superior Predictive Power: The IRIS model 

demonstrates superior predictive power compared to 

existing transcriptomic biomarkers, accurately 

classifying responders and non-responders and 

effectively stratifying patients based on survival 

outcomes. (34) This suggests that RDIs reflect 

fundamental immune response mechanisms impacting 

clinical outcomes, even in the absence of ICB therapy. 

(34) 

• Mechanistic Insights into Resistance: The 

downregulation of RDIs in resistant tumours disrupts 

lymphocyte trafficking to the tumour microenvironment 

(TME), converting a "hot" immune-active TME to a 

"cold" immune-suppressed state. (34) This suppression 

of immune cell infiltration allows the tumour to evade 

immune attack and continue growing.  

• Potential Therapeutic Strategies: Targeting RDIs could 

involve enhancing their activity using recombinant 

chemokines, agonists for RDI receptors, or inhibitors of 

negative regulators of RDI pathways. (34) Combining 

these strategies with existing ICB treatments could 

synergistically enhance anti-tumour responses. (34) 

The IRIS model provides a valuable framework for: 

• Understanding ICB resistance: IRIS facilitates a deeper 

understanding of the complex interplay between ligand-
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receptor interactions, immune cell infiltration, and the 

development of ICB resistance. (34) 

• Predicting treatment response: The model's predictive 

accuracy surpasses current state-of-the-art transcriptomic 

signatures, potentially paving the way for improved 

patient stratification and personalized treatment 

strategies. (34) 

• Identifying novel drug targets: The RDIs identified by 

IRIS represent attractive targets for new therapeutic 

interventions aimed at restoring immune surveillance and 

overcoming ICB resistance. (34) 

B. The Future of Personalized Cancer Immunotherapy 

The study underscores the potential of machine learning 

and personalised medicine to overcome resistance to immune 

checkpoint blockade (ICB) therapy. (34) While ICB has 

revolutionised cancer treatment, a significant portion of 

patients develop resistance, hindering long-term efficacy. (08) 

(31) (34) The IRIS model, developed in this study, exemplifies 

how machine learning can identify critical mechanisms 

driving resistance. (34) By analysing complex interactions 

within the tumour microenvironment (TME), IRIS can predict 

response to therapy and pinpoint targets for novel 

interventions. (34) 

The convergence of machine learning and personalised 

medicine holds immense promise for the future of cancer 

immunotherapy: 

• Precision Biomarker Discovery: Machine learning 

algorithms can sift through vast datasets of genomic, 

transcriptomic, and clinical data to identify biomarkers 

associated with ICB response. (20) (23) (34) These 

biomarkers can be used to stratify patients, ensuring that 

only those likely to benefit receive ICB therapy, 

minimising unnecessary side effects and costs. (13) (23) 

(31) For instance, IRIS identified RDIs as predictive 

biomarkers that outperform existing signatures based on 

gene expression, indicating the potential for more precise 

patient selection. (34) 

• Unravelling Resistance Mechanisms: As exemplified by 

the discovery of RDIs and their role in T cell exclusion, 

machine learning can uncover intricate resistance 

mechanisms that would be difficult to discern through 

traditional methods. (34) The ability to identify specific 

ligand-receptor interactions that are downregulated in 

resistant tumours allows for the development of targeted 

therapies that restore immune function. (07) (34) 

• Personalised Treatment Strategies: Machine learning 

models can integrate diverse data sources to create 

personalised treatment plans tailored to each patient's 

unique tumour characteristics and immune profile. (07) 

(23) (34) By identifying targetable pathways specific to 

resistant tumours, clinicians can tailor ICB combinations 

or integrate additional immunotherapies that address the 

underlying resistance mechanisms. (23) (31) (34) This 

could involve using recombinant chemokines, agonists 

for specific receptors, or inhibitors of negative regulators 

to enhance RDI activity and promote T cell infiltration. 

(07) 

• Predictive Modelling for Combination Therapies: 

Machine learning can predict the efficacy of different 

ICB combinations based on a patient's molecular profile. 

(07) (23) Given that the immune landscape is complex, 

with a multitude of cell types, signalling pathways, and 

checkpoint molecules, using algorithms to predict the 

optimal combination strategy can significantly enhance 

treatment efficacy. (07) (08) (31)  

• Monitoring Treatment Response: Machine learning 

algorithms can analyse longitudinal data, including 

genomic alterations and immune cell dynamics, to 

monitor treatment response and identify early signs of 

resistance. (10) (19) (23) This allows for timely 

adjustments to treatment regimens, potentially 

preventing disease progression and improving outcomes. 

The study's focus on RDIs and the development of the 

IRIS model highlights a paradigm shift in cancer 

immunotherapy: 

• Moving Beyond Single Targets: Traditional approaches 

have often focused on single immune checkpoints. (19) 

(31) However, the IRIS model demonstrates the 

importance of understanding the broader network of cell-

cell interactions within the TME. (34) By targeting 

multiple RDIs or combining them with other 

immunomodulatory agents, we can potentially overcome 

the limitations of targeting single checkpoints. (07) (19) 

Shifting from Upregulation to Downregulation: While much 

research has focused on upregulating immune responses, the 

discovery of RDIs underscores the significance of restoring 

downregulated pathways critical for immune cell trafficking 

and activation. (34) This shift in perspective expands the 

landscape of potential therapeutic targets. 
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