

A Comprehensive Review on Indian Medicinal Plants Having Antipyretic Properties

*Deepak Kumar Birla¹, Prajakta Shelke², Rahul Maskawade³, Ankit Sahu⁴, Mohit Chaturvedi⁵

*¹Gurukul School of Pharmacy, Indore (M.P.) India
²College of Pharmacy, Dr. A.P.J. Abdul Kalam University, Indore (M.P.) India
³Institute of Pharmacy Diploma, Dr. A.P.J. Abdul Kalam University, Indore (M.P.) India
^{4, 5}School of Pharmacy, Dr. A.P.J. Abdul Kalam University, Indore (M.P.) India

Email address: deepaksenpharmacy@rediffmail.com

Abstract—Globally, the value of traditional medicine in treating health problems cannot be overestimated. About 21,000 plants registered by the World Health Organization are used medicinally around the world. Of these 2500 varieties, 150 varieties are widely used in commercial applications in India. According to the WHO, eighty percent of people in developing countries use traditional medicine. India is known as the world's botanical paradise and is the world's leading producer of medicinal plants. Plant-based medications are either utilized as healing agents or, if its main ingredient is separated through chemical processes, they are used as medications. Fever, also known pharmacologically as pyrexia and defined by an increase in body temperature above 37° C, is the most prevalent sickness. A fever is a body temperature that is higher than normal body temperature. A fundamental and essential component of many cultures and the advancement of contemporary science is the traditional usage of herbal medicine. Fever is associated with symptoms of illness behavior such as lethargy, depression, loss of appetite, drowsiness, and lack of concentration. The traditional use of herbal medicine is a very fundamental and essential part of various cultures and the spread of modern science. Medicinal plants are the only readily available medical alternatives for a large portion of our population, and traditional medicines remain part of our overall health care system. The use of Ayurvedic medicines is common in both adults and children and is increasing in many parts of the world. This review article discusses the benefits of using herbal medicine as an antipyretic agent.

Keywords— Traditional, applications, fundamental, lethargy, alternatives.

I. INTRODUCTION

A ntipyretics are drugs that reduce fever. Fever is defined as the elevation of body temperature above the normal range. Antipyretics suppress the hypothalamus as prostaglandins raise the temperature. Then the body works to lower the temperature, thus reducing fever.¹

Medicinal plants contain a large number of compounds that are the main source of therapeutic agents for treating human diseases. Currently, botanical research is receiving increasing attention all over the world, and much evidence has been collected showing the huge potential of medicinal plants used in various traditional systems. Plant-derived medicines are used as therapeutic agents, or their main components are separated through chemical processing and used as medicines. Ayurveda is the most widely used traditional medical system in India, although other systems such as Siddha and Unani are also used in the Indian subcontinent. Recent discoveries and advances in medicinal and aromatic plants have led to the enrichment of human medicine. There are many traditional medical systems in the world, each with different philosophies and cultural origins.

II. HERBAL DRUGS AS ANTIPYRETICS

The valuation of traditional medicine in health issues is of great importance at the global level. In India, many tribal plants such as Chirchitta, Bhringraj, Bijasar, Arjuna, Neem, and Tulsi are traditionally used to treat fever. Most Ayurvedic preparations are polyhedral and treat multiple components of a medical condition. A group of antipyretics was defined in Charak Samhita. Various medicinal plants such as neem, arjuna, ashwagandha, and tulsi are traditionally used to treat fever. This article will focus on the treatment of fever associated with herbal medicine.²⁻⁴

S. No.	Common Name	Botanical Name	Family	Plants part used			
1	Aghata	Achyranthes aspera	Amarantaceae	Leaves, Seeds, Root			
2	Akasbel	Cuscuta reflexa	Convolvulaceae	Seeds, Stem, Fruits			
3	Akasbel	Cuscuta Reflexa	Convolvulaceae	Seeds, Stem, Fruits			
4	Amla	Emblica officinalis	Euphorbiaceae	Fruits			
5	Australian fever tree	Eucalyptus globules	Myrtaceae	Dried leaves, Gum, Oil			
6	Bahera	Terminalia belerica	Combretaceae	Fruit			
7	Bambo	Bambusa vulgaris	Graminae	Shoot, Seeds, Roots, Leaves			
8	Bhindi	Abelmoschus esculentus	Malvaceae	Seed			
9	Bhringaraj	Eclipta erecta	Compositae	Roots, Leaves			
10	Biiter gourd	Momordica charantia	Cucurbitaceae	Fruits, Leaves, Seeds			
11	Bish	Aconitum ferox	Ranunculaceae	Dried Roots			
12	Brahmi	Centella asiatica	Umbellifera	Whole Plant			
13	Butterfly Pea	Clitoria ternatea	Fabaceae	Root			

TABLE 1. List of plants having antipyretic properties

Deepak Kumar Birla, Prajakta Shelke, Rahul Maskawade, Ankit Sahu, and Mohit Chaturvedi, "A Comprehensive Review on Indian Medicinal Plants Having Antipyretic Properties," *International Research Journal of Pharmacy and Medical Sciences (IRJPMS)*, Volume 7, Issue 3, pp. 49-50, 2024.

14	Cashew	Anacardium occidentale	Anacardiaceae	Fruit, Seed, Bark, Oil
15	Chickpea	Cicer arietinum	Leguminosae	Seeds
16	Chitravalli	Rubia cordifolia	Rubiaceae	Roots
17	Cinchona	Cinchona officinalis	Rubiaceae	Bark
18	Damanpaper	Oldenlandia Herbacea	Rubiaceae	Whole Herb
19	Datyuni	Alstonia scholaris	Apocynaceae	Leaves, Bark
20	Dhaniya	Coriandrum sativum	Umbelliferae	Leaves, Seeds
21	Ganja	Cannibis sativa	Cannabaceae	Leaves
22	Green chiretta	Andrographis paniculata	Acanthaceae	Leaves
23	Gulancha	Cocculus cordifolia	Menispermaceae	Stem, Leaves, Root
24	Gurach	Tinospora cardifolia	Menispermaceae	Stem, Root
25	Harar	Terminalia chebula	Combretaceae	Fruit
26	Harivera	Pavonia Odorata	Malvaceae	Roots
27	Imli	Tamarindus indica	Caesalpiniaceae	Fruits
28	Indian Privet	Clerodendrum inerme	Lamiaceae	Aerial Part
29	Indrayan	Citrullus colocynthis	Cucurbitaceae	Fruits, Seeds
30	Jangali Lahusan	Allium sativum	Liliaceae	Bulb, Oil
31	Jawasa	Alhagi maurorum	Papilionaceae	Seed, Oil
32	Jhar Haldi	Coscinum fenestratum	Menispermaceae	Stem
33	JwaranThakah	Swertia chirata	Gentianaceae	Whole Herb
34	Kaali Mirch	Piper nigrum	Piperaceae	Dried Fruits
35	Kasondi	Cassia occidentalis	Caesalpiniaceae	Leaves, Seeds, Root
36	Neem	Azadirachta indica	Meliaceae	Leaves
37	Nirgandi	Vitex negundo	Verbenaceae	Roots, Flower; Fruits, Bark
38	Nutgrass	Cyperus rotundus	Cyperaceae	Whole Plant, Volatile Oil ⁵⁻⁹
39	Palwal	Trichosanthes dioica	Cucurbitaceae	Fruits
40	Pan	Piper betel	Piperaceae	Leaves
41	PhalaKantak	Daemia extensa	Ascepidaceae	Leaves; Roots
42	Rasaut	Berberis aristata	Berberidaceae	Root Bark, Stem, Wood
43	Sage	Cordia globosa	Boraginaceae	Fruits, Kernel, Bark
44	Sarivan	Desmodium Gangentium	Leguminosae	Roots, Bark
45	Satavari	Asparagus adscendens	Liliaceae	Tuberous Roots
46	Suganhi	Hemidesmus indicus	Ascepiadaceae	Roots
47	Swet Chandan	Santalum album	Santalaceae	Wood, Volatile oil
48	Tulsi	Ocimum sanctum	Labiatae	Leaves
49	Wild mint	Lantana involucrate	Verbenaceae	Whole Herb
50	Yellow Cedar	Tecoma stans	Bognoniaceae	Wood, Oil

III. CONCLUSION

It is clear from this article that medicinal plants play an important role in controlling various diseases. Various herbal plants and plant extracts have significant antipyretic properties in various animal models. This article shows that the abovementioned medicinal plants are capable of preventing various diseases.

REFERENCES

- D M Aronoff, E G Neilson, Antipyretics: mechanisms of action and clinical use in fever suppression, Am J Med., 2001 Sep;111(4):304-15.
- 2. Kokate C.K. *et al.* Pharmacognosy, 2009, 43rd edition, Nirali Prakashan, Pune,
- 3. Prasad Ramachandra P.. Folklore medicinal plants of north Andaman Island, India', Fitoterapia, 2008, 79:458-464.

- Mukherjee K.S, Mukhopadhyay B., Mondal S., Gorai D. and Brahmachari G., Triterpenoid constituents of Borreria articularis. Journal of the Chinese Chemical Society, 2004, 51(1): 229-231.
- Pawandeep Shukla *et al.* Indian Herbal Plants used as Antipyretic: A review, International Journal of Pharmacy and Life Sciences, 2019 Nov/Dec.: 10(11-12): 6406-6409.
- 6. Milind P, Dev C; Orange: range of benefits. IRJP 2012; 3 (7): 59-63.
- Pathan AR, Kothawade KA, Logade MN; Anxiolytic and analgesic effect of seeds of Coriandrum sativum Linn. IJRPC 2011; 1(4): 1087-1099.
- 8. Garg VK, Khosa RL; Analgesic and antipyretic activity of aqueous extract of Cynodon dactylon. Pharmacologyonline 2008; 3: 12-18.
- Maurya Umashanker, Srivastava Shruti, Traditional Indian herbal medicine used as antipyretic, antiulcer, anti-diabetic and anticancer: A Review, International Journal of Research In Pharmacy and Chemistry, 2011, 1(4), 1152-1159.

Deepak Kumar Birla, Prajakta Shelke, Rahul Maskawade, Ankit Sahu, and Mohit Chaturvedi, "A Comprehensive Review on Indian Medicinal Plants Having Antipyretic Properties," *International Research Journal of Pharmacy and Medical Sciences (IRJPMS)*, Volume 7, Issue 3, pp. 49-50, 2024.